Dentsply B4 Pre-Impression Surface Optimizer

Dentsply (Australia)

Chemwatch: **46-6265** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 05/01/2015 Print Date: 05/01/2015 Initial Date: Not Available L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Dentsply B4 Pre-Impression Surface Optimizer	
Chemical Name	Not Applicable	
Synonyms	Not Available	
Proper shipping name	ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)	
Chemical formula	Not Applicable	
Other means of identification	Not Available	
CAS number	Not Applicable	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Use according to manufacturer's directions.

Details of the manufacturer/importer

Registered company name	Dentsply (Australia)	
Address	11-21 Gilby Road Mount Waverley 3149 VIC Australia	
Telephone	+61 3 9538 8240	
Fax	+61 3 9538 8260	
Website	www.dentsply.com.au	
Email	Not Available	

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	1300 552 929 (Mon-Fri 9am-5pm)
Other emergency telephone numbers	1300 552 929 (Mon-Fri 9am-5pm)

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2
1800 039 008	+612 9186 1132	Not Available

Once connected and if the message is not in your prefered language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	1
Flammability	3		i I
Toxicity	1		0 = Minimum
Body Contact	2		1 = Low 2 = Moderate
Reactivity	1		3 = High
Chronic	0		4 = Extreme

Poisons Schedule	Not Applicable	
GHS Classification [1]	Flammable Liquid Category 2, Eye Irritation Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

GHS label elements

Chemwatch: **46-6265** Page **2** of **12**

Version No: 2.1.1.1

Dentsply B4 Pre-Impression Surface Optimizer

Issue Date: **05/01/2015** Print Date: **05/01/2015**

SIGNAL WORD DANGER

Hazard statement(s)

H225	Highly flammable liquid and vapour
H319	Causes serious eye irritation

Supplementary statement(s)

Not Applicable

CLP classification (additional)

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P233	Keep container tightly closed.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	
P240	Ground/bond container and receiving equipment.	
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	
P242	Use only non-sparking tools.	
P243	Take precautionary measures against static discharge.	

Precautionary statement(s) Response

P370+P378_2	In case of fire: Use alcohol resistant foam or fine spray/water fog for extinction.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P337+P313	+P313 If eye irritation persists: Get medical advice/attention.	
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.	

Precautionary statement(s) Storage

P403+P235 Store in a well-ventilated place. Keep cool.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
64-17-5	<40	ethanol
25322-68-3	<20	polyethylene glycol
	balance	Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: ► Immediately remove all contaminated clothing, including footwear. ► Flush skin and hair with running water (and soap if available). ► Seek medical attention in event of irritation.
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to ethanol:

A cuta innaction in non-tolorant nations usually reconnds to supportive care with energial attention to prevention of assistation, replacement of fluid and correction of nutritional deficiencies.

Chemwatch: 46-6265 Page 3 of 12 Issue Date: 05/01/2015 Version No: 2.1.1.1 Print Date: 05/01/2015

Dentsply B4 Pre-Impression Surface Optimizer

- (magnesium, thiamine pyridoxine, Vitamins C and K).
- ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination.
- Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine).
- Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions.
- Fructose administration is contra-indicated due to side effects.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder
- BCF (where regulations permit).
- Carbon dioxide
- ▶ Water spray or fog Large fires only.

Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

▶ Alert Fire Brigade and tell them location and nature of hazard.

- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- · Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard

Fire Fighting

- ▶ Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers
- ▶ On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:, carbon dioxide (CO2), other pyrolysis products typical of burning organic material

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- Remove all ignition sources. Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Major Spills

- ▶ Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- ▶ Consider evacuation (or protect in place).
- ▶ No smoking, naked lights or ignition sources.
- Increase ventilation.
 - Stop leak if safe to do so.
 - ▶ Water spray or fog may be used to disperse /absorb vapour.
 - ▶ Contain spill with sand, earth or vermiculite.
 - ▶ Use only spark-free shovels and explosion proof equipment.
 - Collect recoverable product into labelled containers for recycling.
 - Absorb remaining product with sand, earth or vermiculite
 - Collect solid residues and seal in labelled drums for disposal
 - Wash area and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the MSDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps. ▶ DO NOT enter confined spaces until atmosphere has been checked.

Chemwatch: 46-6265 Page 4 of 12 Issue Date: 05/01/2015 Version No: 2.1.1.1

Dentsply B4 Pre-Impression Surface Optimizer

Print Date: 05/01/2015

- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling. Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Other information Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 - Protect containers against physical damage and check regularly for leaks
 - ▶ Observe manufacturer's storage and handling recommendations contained within this MSDS.

Conditions for safe storage, including any incompatibilities

- ▶ Packing as supplied by manufacturer.
- ▶ Plastic containers may only be used if approved for flammable liquid.
- ▶ Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- ▶ Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Storage incompatibility

Suitable container

▶ Avoid reaction with oxidising agents

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	ethanol	Ethyl alcohol	1880 mg/m3 / 1000 ppm	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
ethanol	Ethyl alcohol; (Ethanol)	Not Available	Not Available	Not Available
polyethylene glycol	Polyethylene glycol	30 mg/m3	200 mg/m3	18000 mg/m3

Ingredient	Original IDLH	Revised IDLH
ethanol	15,000 ppm	3,300 [LEL] ppm
polyethylene glycol	Not Available	Not Available

MATERIAL DATA

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

for polyethylene glycols:

For powdered forms:

The polyethylene glycols are extremely low in oral toxicity, are not significantly irritating to the eyes or skin, and are not absorbed through the skin in toxic amounts. vapour pressures are extremely low and inhalation exposure is limited to mists. Based on experimental data and human experience, these substances do not present significant hazards to health in the workplace

Chemwatch: **46-6265** Page **5** of **12**

Version No: **2.1.1.1**

Dentsply B4 Pre-Impression Surface Optimizer

For ethanol:

Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition)

Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. Inhalation also causes local irritating effects to the eyes and upper respiratory tract, headaches, sensation of heat intraocular tension, stupor, fatigue and a need to sleep. At 15000 ppm there was continuous lachrymation and coughing.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed: Solvent, vapours, degreasing etc., evaporating from tank (in still air). aerosols, furnes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid furnes, pickling (released at low velocity into zone of active generation) 0.5-1 m/s (100-200 f/min.) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

Appropriate engineering controls

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 t/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eve and face protection

Safety glasses with side shields

Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

Hands/feet protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- ▶ When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

Issue Date: 05/01/2015

Print Date: 05/01/2015

Dentsply B4 Pre-Impression Surface Optimizer

Body protection	See Other protection below
Other protection .	 ▶ Overalls. ▶ PVC Apron. ▶ PVC protective suit may be required if exposure severe. ▶ Eyewash unit. ▶ Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.
Thermal hazards	Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the $\ computer$ generated selection:

Dentsply B4 Pre-Impression Surface Optimizer

Material	СРІ
BUTYL	A
NEOPRENE	A
NITRILE	A
NITRILE+PVC	A
PE/EVAL/PE	A
PVC	В
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

NOTE : As a series of factors will influence the actual performance of the glove, a finalselection must be based on detailed observation. -

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1 P2	-
up to 50	1000	-	A-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	A-2 P2
up to 100	10000	-	A-3 P2
100+			Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen $\mbox{cyanide(HCN)}, \mbox{ B3 = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ G = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Sulfur dioxide(SO2)}, \mbox{ E = Acid gas or hydrogen cyanide(HCN)}, \mbox{ E = Acid gas or hydro$ Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Orange low viscosity liquid with an alcohol odour; miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	1.0 approx
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	5-8	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	76.7 (initial)	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	21 (TCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	12.8	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	2.5	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2.5 @20C	Gas group	Not Available
Solubility in water (g/L)	Miscible	pH as a solution(1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity See section 7

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

^{*} Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Version No: **2.1.1.1**

Dentsply B4 Pre-Impression Surface Optimizer

Issue Date: 05/0	1/2015
Print Date: 05/0	1/2015

Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertino

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Inhaled

Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm.

The very low volatility of polyethylene glycols (PEGs) make inhalation exposure unlikely other than in the form of mist which may be formed by violent agitation or at high temperatures. No toxic effects have been reported through inhalation. [AIHA Journal]

Polyglycols at 200 mg/l were easily inhaled with no adverse effects

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Accidental ingestion of the material may be damaging to the health of the individual.

Ingestion of ethanol may produce nausea, vomiting, gastrointestinal bleeding, abdominal pain and diarrhoea, Systemic effects;

Ingestion

Blood concentration:	Effects:
<1.5 g/l	Mild: Impaired visual acuity, coordination and reaction time, emotional lability
1.5-3.0 g/l	Moderate: Slurred speech, confusion, ataxia, emotional lability, perceptual and sensation disturbances possible blackout spells, and incoordination with impaired objective performance in standardised tests. Possible diplopia, flushing, tachycardia, sweating and incontinence. Bradypnoea may occur early and tachypnoea may develop in cases of metabollic acidosis, hypoglycaemia and hypokalaemia. CNS depression may progress to coma.
3-5 g/l	Severe: Cold clammy skin, hypothermia and hypotension. Atrial fibrillation and atrioventricular block have been reported. Respiratory depression may occur, respiratory failure may follow serious intoxication, aspiration of vomitus may result in pneumonitis and pulmonary oedema. Convulsions due to severe hypoglycaemia may also occur Acute hepatitis may develop.

Although the polyethylene glycols (PEGs) are extremely low in acute oral toxicity, the LD50s decrease as the molecular weights increase. PEGs of average molecular weights 4000 to 6000 are not absorbed from the rat intestine within 5 hours whilst the lower molecular weight variety (1000 to 1540) are absorbed to only a slight extent

The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either:

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin Contact

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The polyethylene glycols (PEGs)may be absorbed by the skin but no toxic effects have been noted and sensitisation does not occur. This material may increase the absorption activity or toxicity of other ingredients in a mixture. (Source: Genium)

Open cuts, abraded or irritated skin should not be exposed to this material

Eve

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents.

Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively

described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size.

Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnoea, and urticarial rashes. The causative agent may be acetic acid,

a metabolite (1).
(1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996

Polyethylene glycols appear to act as slow-acting parasympathomimetic-like compounds. When given intravenously they may increase the tendency of blood to clot and if given rapidly may cause cell clotting and death from embolism. Ethylene glycol is not believed to be a metabolite

Dentsply B4 Pre-Impression
Surface Ontimizer

OXICITY	IRRITATIO

Page 8 of 12

Issue Date: 05/01/2015 Print Date: 05/01/2015 **Dentsply B4 Pre-Impression Surface Optimizer**

	Not Available	Not Available
	тохісіту	IRRITATION
	Inhalation (rat) LC50: 20,000 ppm/10h	Eye (rabbit): 500 mg SEVERE
	Inhalation (rat) LC50: 64000 ppm/4h	Eye (rabbit):100mg/24hr-moderate
	Oral (human) LDLo: 1400 mg/kg	Skin (rabbit):20 mg/24hr-moderate
ethanol	Oral (man) TDLo: 1.40 mg/kg	Skin (rabbit):400 mg (open)-mild
	Oral (man) TDLo: 50 mg/kg	
	Oral (rat) LD50: 7060 mg/kg	
	Oral (woman) TDLo: 256 mg/kg/12 wks	
	Not Available	Not Available
	TOXICITY	IRRITATION
	Intraperitoneal (Mouse) LD50: 473 mg/kg	Eye (rabbit): 500mg/24h - mild.
	Intraperitoneal (Mouse) LD50: 7500 mg/kg	Skin (rabbit): 500mg/24h - mild.
	Intraperitoneal (Rat) LD50: 12600 mg/kg	
	Intraperitoneal (Rat) LD50: 14100 mg/kg	
	Intraperitoneal (Rat) LD50: 15390 mg/kg	
	Intraperitoneal (Rat) LD50: 15570 mg/kg	
	Intraperitoneal (Rat) LD50: 17700 mg/kg	
	Intraperitoneal (Rat) LD50: 6790 mg/kg	
	Intraperitoneal (Rat) LD50: 9700 mg/kg	
	Intraperitoneal (Rat) LD50: 9708 mg/kg	
	Intravenous (Cat) TDLo: 1000 mg/kg	
	Intravenous (Mouse) LD50: 7.9 mg/kg	
	Intravenous (Mouse) LD50: 8550 mg/kg	
	Intravenous (Rat) LD: 3 mg/kg	
polyethylene glycol	Intravenous (Rat) LD50: 7130 mg/kg	
	Intravenous (Rat) LD50: 7312 mg/kg	
	Intravenous (Rat) LD50: 7500 mg/kg	
	Oral (Guinea pig) LD50: 15700 mg/kg	
	Oral (Guinea pig) LD50: 19600 mg/kg	
	Oral (Guinea pig) LD50: 22500 mg/kg	
	Oral (Guinea pig) LD50: 28900 mg/kg	
	Oral (Guinea pig) LD50: 50900 mg/kg	
	Oral (Mouse) LD50: 28915 mg/kg	
	Oral (Rabbit) LD50: 17300 mg/kg	
	Oral (Rabbit) LD50: 26800 mg/kg	
	Oral (Rabbit) LD50: 28900 mg/kg	
	Oral (Rat) LD50: 1054 mg/kg	
	Oral (Rat) LD50: 27500 mg/kg	
	Oral (Rat) LD50: 30200 mg/kg	
	Oral (Rat) LD50: 31600 mg/kg	
	Oral (Rat) LD50: 31640 mg/kg	
	Oral (rat) LD50: 33750 mg/kg	<u> </u>
	Oral (Rat) LD50: 44200 mg/kg	
	Oral (Rat) LD50: 51200 mg/kg	

Chemwatch: 46-6265 Page 9 of 12 Issue Date: 05/01/2015
Version No: 2.1.1.1 Print Date: 05/01/2015

Dentsply B4 Pre-Impression Surface Optimizer

Oral (Rat) LD50: 51310 mg/kg	
Oral (Rat) LD50: 600 mg/kg	
Not Available	Not Available

Dentsply B4 Pre-Impression

Surface Optimizer

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances

for polyethylene glycols

Pure polyethylene glycols have essentially similar toxicity, with toxicity being inverse to molecular weights. Absorption from the gastrointestinal tract decreases with increasing molecular weight

The G.I. absorption of a series of polyethylene glycols has been studied. Polyethylene glycols having average molecular weights of 4000 and 6000 showed no absorption from the rat intestine over a five-hour period, while polyethylene glycols of 1000 and 1540 molecular weights showed a slight absorption amounting to less than 2% of the total dose during the same period. When 1 g doses of polyethylene glycols of molecular weight 1000 (PEG 1000) and 6000 (PEG 6000) were given intravenously to six human subjects, 85% of PEG 1000 and 96% of PEG 6000 were excreted in the urine in 12 hours. When these two same materials in 10 g doses were given orally to five human subjects, none of the PEG 6000 was found in the urine in the following 24 hours, whereas about 8% of PEG 1000 administered was found to excrete in urine within 24 hours. When PEG 400 was given intravenously to three human subjects, an average of 77% recovery of this material was found in the urine in 12 hours. However, when the same substance was given orally to the same three human subjects, a recovery of between 40 and 50% of the dose was determined in the urine in the course of the following 24 hours. Single oral doses of PEG 400 were incompletely recovered from urine and faeces of rabbits even when collection of excreta was continued as long as four days following the dose. Evidence from all these and other studies indicate that ethylene glycol is not formed as a metabolite of PEG 400

Prolonged skin contact of PEG 1500 and 4000 upon the skin of rabbits in dosages of 10 g/kg bw showed no deleterious effects on internal organs and little, if any, of the materials was absorbed through the skin.

Although early reports indicated that skin sensitization was observed among a few human subjects and in guinea pigs tested with certain polyethylene glycols, later studies showed that currently produced materials were without irritating or sensitizing properties. However, recent report (Fischer, 1978) demonstrated that four patients showed allergic reactions to lower molecular weight liquid polyethylene glycols in topical medications. Two had immediate urticarial reactions to PEG 400. Two other patients had delayed allergic eczematous reactions, one to PEG 200, and one to PEG 300.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

ETHANOL

POLYETHYLENE GLYCOL

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for polyethylene glycols

Pure polyethylene glycols have essentially similar toxicity, with toxicity being inverse to molecular weights. Absorption from the gastrointestinal tract decreases with increasing molecular weight

The G.I. absorption of a series of polyethylene glycols has been studied. Polyethylene glycols having average molecular weights of 4000 and 6000 showed no absorption from the rat intestine over a five-hour period, while polyethylene glycols of 1000 and 1540 molecular weights showed a slight absorption amounting to less than 2% of the total dose during the same period. When 1 g doses of polyethylene glycols of molecular weight 1000 (PEG 1000) and 6000 (PEG 6000) were given intravenously to six human subjects, 85% of PEG 1000 and 96% of PEG 6000 were excreted in the urine in 12 hours. When these two same materials in 10 g doses were given orally to five human subjects, none of the PEG 6000 was found in the urine in the following 24 hours, whereas about 8% of PEG 1000 administered was found to excrete in urine within 24 hours. When PEG 400 was given intravenously to three human subjects, an average of 77% recovery of this material was found in the urine in 12 hours. However, when the same substance was given orally to the same three human subjects, a recovery of between 40 and 50% of the dose was determined in the urine in the course of the following 24 hours. Single oral doses of PEG 400 were incompletely recovered from urine and faeces of rabbits even when collection of excreta was continued as long as four days following the dose. Evidence from all these and other studies indicate that ethylene glycol is not formed as a metabolite of PEG 400.

Prolonged skin contact of PEG 1500 and 4000 upon the skin of rabbits in dosages of 10 g/kg bw showed no deleterious effects on internal organs and little, if any, of the materials was absorbed through the skin.

Although early reports indicated that skin sensitization was observed among a few human subjects and in guinea pigs tested with certain polyethylene glycols, later studies showed that currently produced materials were without irritating or sensitizing properties. However, recent report (Fischer, 1978) demonstrated that four patients showed allergic reactions to lower molecular weight liquid polyethylene glycols in topical medications. Two had immediate urticarial reactions to PEG 400. Two other patients had delayed allergic eczematous reactions, one to PEG 200, and one to PEG 300.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for molecular weights (200-8000) * Oral (rat) LD50: 31000->50000 mg/kg Oral (mice) LD50: 38000->50000 mg/kg Oral (g.pig) LD50: 17000->50000 mg/kg Oral (rabbit) LD50: 14000->50000 mg/kg * AIHA WEEL Guides Intraperitoneal (mice) LD50: 3100-12900 mg/kg

Acute Toxicity	0	Carcinogenicity	0
Skin Irritation/Corrosion	0	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	0
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

✓ – Data required to make classification available

— Data available but does not fill the criteria for classification

Note: Note:

CMR STATUS

Not Applicable

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

^{*} Value obtained from manufacturer's msds

Version No: 2.1.1.1

Dentsply B4 Pre-Impression Surface Optimizer

Issue Date: **05/01/2015**Print Date: **05/01/2015**

Ingredient	Endpoint	Test Duration	Effect	Value	Species	BCF
ethanol	Not Available					
polyethylene glycol	Not Available					

When ethanol is released into the soil it readily and quickly biodegrades but may leach into ground water; most is lost by evaporation. When released into water the material readily evaporates and is biodegradable.

Ethanol does not bioaccumulate to an appreciable extent.

The material is readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition.

Environmental Fate:

TERRESTRIAL FATE: An estimated Koc value of 1 indicates that ethanol is expected to have very high mobility in soil. Volatilisation of ethanol from moist soil surfaces is expected to be an important fate process given a Henry's Law constant of 5X10-6 atm-m3/mole. The potential for volatilisation of ethanol from dry soil surfaces may exist based upon an extrapolated vapor pressure of 59.3 mmHg. Biodegradation is expected to be an important fate process for ethanol based on half-lives on the order of a few days for ethanol in sandy soil/groundwater microcosms.

AQUATIC FATE: An estimated Koc value of 1 indicates that ethanol is not expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon a Henry's Law constant of 5X10-6 atm-m3/mole. Using this Henry's Law constant and an estimation method, volatilisation half-lives for a model river and model lake are 3 and 39 days, respectively. An estimated BCF= 3, from a log Kow of -0.31 suggests bioconcentration in aquatic organisms is low. Hydrolysis and photolysis in sunlit surface waters is not expected to be an important environmental fate process for ethanol since this compound lacks functional groups that hydrolyse or absorb light under environmentally relevant conditions. Ethanol was degraded with half-lives on the order of a few days in aquatic studies conducted using microcosms constructed with a low organic sandy soil and groundwater, indicating it is unlikely to be persistent in aquatic environments(8).

ATMOSPHERIC FATE: Ethanol, which has an extrapolated vapor pressure of 59.3 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase ethanol is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 5 days, calculated from its rate constant of 3.3X10-12 m3/molecule-sec at 25 deg C.

Ecotoxicity:

log Kow: -0.31- -0.32 Half-life (hr) air: 144

Half-life (hr) H2O surface water: 144 Henry's atm m3 /mol: 6.29E-06 BOD 5 if unstated: 0.93-1.67,63%

COD: 1.99-2.11,97%

ThOD: 2.1

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
ethanol	LOW (Half-life = 2.17 days)	LOW (Half-life = 5.08 days)	
polyethylene glycol	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation	
ethanol	LOW (LogKOW = -0.31)	
polyethylene glycol LOW (LogKOW = -1.1996)		

Mobility in soil

Ingredient	Mobility
ethanol	HIGH (KOC = 1)
polyethylene glycol	HIGH (KOC = 1)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ▶ Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

Product / Packaging

Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning or process equipment to enter drains.

- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

disposa

Labels Required

Chemwatch: 46-6265 Page 11 of 12

Issue Date: 05/01/2015 Version No: 2.1.1.1

Print Date: 05/01/2015

Dentsply B4 Pre-Impression Surface Optimizer Marine Pollutant NO HAZCHEM •2YE Land transport (ADG) **UN** number Packing group Ш

UN proper shipping name	ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)		
Environmental hazard	No relevant data		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Special precautions for user	Special provisions 144		

Limited quantity

| 1L

Air transport (ICAO-IATA / DGR)

nii transport (10A0-1AIA / DOIL)			
UN number	1170		
Packing group	II		
UN proper shipping name	Ethyl alcohol; Ethyl alcohol solution; Ethanol; Ethanol solution		
Environmental hazard	No relevant data		
Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable ERG Code 3L		
	Special provisions	A3A58A180	
	Cargo Only Packing Instructions	364	
	Cargo Only Maximum Qty / Pack	60 L	
Special precautions for user	Passenger and Cargo Packing Instructions	353	
	Passenger and Cargo Maximum Qty / Pack	5L	
	Passenger and Cargo Limited Quantity Packing Instructions	Y341	
	Passenger and Cargo Limited Maximum Qty / Pack	1L	
		•	

Sea transport (IMDG-Code / GGVSee)

UN number	1170		
Packing group			
UN proper shipping name	ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)		
Environmental hazard	No relevant data		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
Special precautions for user	EMS Number F-E , S-D Special provisions 144 Limited Quantities 1 L		

Transport in bulk according to Annex II of MARPOL 73 / 78 and the IBC code

Source	Ingredient	Pollution Category
IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk	polyethylene glycol	z

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ethanol(64-17-5) is found on the following regulatory lists	"Australia Exposure Standards", "Australia Inventory of Chemical Substances (AICS)", "Australia Hazardous Substances Information System - Consolidated Lists"
polyethylene glycol(25322-68-3) is found on the following regulatory lists	"Australia Inventory of Chemical Substances (AICS)"

SECTION 16 OTHER INFORMATION

Chemwatch: 46-6265 Page 12 of 12 Issue Date: 05/01/2015 Version No: 2.1.1.1 Print Date: 05/01/2015

Dentsply B4 Pre-Impression Surface Optimizer

Ingredients with multiple cas numbers

Name	CAS No
polyethylene glycol	101677-86-5, 106186-24-7, 107502-63-6, 107529-96-4, 109550-27-8, 112384-37-9, 112895-21-3, 114323-93-2, 116549-90-7, 119219-06-6, 125223-68-9, 12676-74-3, 12770-93-3, 133573-31-6, 134919-43-0, 150872-82-5, 154394-38-4, 156948-19-5, 169046-53-1, 174460-08-3, 174460-09-4, 188364-77-4, 188924-03-0, 189154-62-9, 191743-71-2, 196696-84-1, 201163-43-1, 206357-86-0, 25104-58-9, 25322-68-3, 25609-81-8, 34802-42-1, 37361-15-2, 50809-04-6, 50809-59-1, 54510-95-1, 54847-64-2, 59763-40-5, 60894-12-4, 61840-14-0, 64441-68-5, 64640-28-4, 67411-64-7, 70926-57-7, 75285-02-8, 75285-03-9, 77986-38-0, 79964-26-4, 80341-53-3, 8038-37-7, 85399-22-0, 85945-29-5, 88077-80-9, 88747-22-2, 90597-70-9, 9081-95-2, 9085-02-3, 9085-03-4, 99264-61-6, 99333-89-8

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.